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Abstract
The presentation describes a novel approach to statistical 
analysis of financial time series. 
The approach is based on n-grams frequency dictionaries derived 
from the quantized market data. Here we focus on binary 
quantization. The frequency dictionaries are studied by 
evaluating their information capacity using relative entropy 
(Kullback-Leibler divergence). Calculating relative entropy in 
sliding window may lead to development of new market 
indicators, detecting market bubbles and other regimes.
Other possible applications of the proposed technique include 
market event study with the n-grams of extreme information 
value. 
The finite length of the input data presents certain computational 
and theoretical challenges which we discuss.

This is a report on a work in progress and describes the 
methodology more than the final results.
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Introduction and Motivation
● markets considered not entirely random [1];
● technical analysis is viewed as a tool exposing non-

randomness.
○ In its paradigm, asset price discounts all information 

available up until current moment to the market participants 
[3];

● analysis of information flow between market participants [2] 
may lead to new technical market indicators and insights into 
the market behavior;

● financial time series is the primary objects of this study and they 
thought to reflect the information flow in question;

● we use relative information methods inspired by novel works 
in bioinformatics [4,5,6] and build on our previous works [7,8].

Time series in this work represent adjusted close price p(t) where t 
is trading day. The series is obviously finite in both direction and real 
valued.
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Quantization Mapping
Transformations:

Adjusted Close p(t) → (log) Returns r(t) → sign*(r(t))      

result in {-1,1}-valued series (binary quantization). The function sign* 
here maps 0 to -1:

                 
sign*(x) = 

Next, for convenience we use alphabet A={a,A} instead: -1→a, 1→A. 
Thus, the series p(t) transforms into a string s in alphabet A,
i.e. Q: p(t)→s.

Note: Other quantizations are possible. The described one is (a) the simplest one; 
(b) contains no parameters; (c) matches binary models in derivatives pricing.

Sliding Window
We focus on substrings w(t) of fixed length W<|s| that start at position 
t in the “master” string s. The quantization and substring ops 
commute. 

 1 if x > 0

 -1 if x ≤ 0
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Dictionaries. Projection and Lifts.
Frequency dictionary Dn(w) for string w is mapping: 

Dn: v → fv,  
where:

v is an n-gram v of length n  in alphabet A, 

fv is its normalized frequency in the string w (i.e. ∑ fv = 1).

We call n in this definition dictionary thickness.

Projection P k: Dn → D’n-k of dictionary Dn  to dictionary D’n-k is natural 
mapping that computes frequencies of (n-k)-grams from Dn(w) rather 
than from the original string w.

Lift Lk: Dn → D*n+k of dictionary Dn is right inverse mapping:

P k ○Lk = 1.

Notes:  (a) Looped and unlooped strings w lead to subtly different definitions for lifts and 
projections. We ignore that here. (b) Lift is not defined uniquely, which is easy to see. (c) 
Generally P k ○Lk ≠ 1.
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Max Entropy Lift
Dictionary Entropy: S(Dn) = -∑ fv ln fv

Max Entropy Lift L ̊k(Dn): D ̊n+k = ͘ argmax S(D*n+k)  s.t. P k(D*n+k)= Dn.

Max Entropy Lift L ̊k is unique and can be computed using Lagrange 
multipliers where constraints are linear equations on frequencies of 
n-grams in D*n+k and Dn [4,5,6].

Information Capacity
Denote D ͠n = ͘L ̊1(Dn-1). (=max entropy lift from the (n-1)-grams dictionary) 

Information capacity Sn of string s on n-grams of length n is relative 
entropy of Dn against D ͠n (Kullback-Leibler divergence):

Sn = ∑ fv  ln (fv  /  f ͠v),     

where fv  and f ͠v  are frequencies from  Dn and D ͠n.
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Normalized Information Capacity
If S’n is bootstrapped (via an equivalent Bernoulli process) 
information capacity then normalized information capacity S ͞n is 
defined in terms of expectation E and standard deviation σ of the 
bootstrapped value:

                       S ͞n =
Sn - E(S’n)
    σ(S’n)

Figure 1. 
Top: BAC (Bank of America) 
normalized information 
capacity computed for single 
day return, static window 
W=500. 
Vertical dashed line shows 
noise limit (see below).
Bottom: box plot of 
normalized inf value of n-
grams.
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“Noise Limit” from Finite Window Length 

There are W - n of n-grams in the text of length W and 2ⁿ possible n-
grams in alphabet |A|=2. Hence we keep n < log2W.

Note: More advanced analysis using autocorrelation function of n-grams can give 
better estimates.

n-Grams with Extreme Information Value
If fv  and  f ͠v are frequencies (≠0) of n-gram v in Dn and D ͠n, then:

● v is (ε-)information rich if |ln (fv / f ͠v)| ≥ 1/ε, 
(IR n-gram for brevity), 

● v is (ε-)information poor if |ln (fv / f ͠v)| ≤ ε, 
(IP n-gram for brevity) 

for some 1≥ε>0. 

Hypothesis: Both IR and IP n-grams may indicate specific states of 
the market associated with trends, their beginning and end.
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Multiple Days Returns
Single day returns are subject to noise. We also consider multiple 
days d returns while keeping d (much) smaller than W (window size).

Aggregate Values Calculation
For a fixed sliding window position, summation of information value, 
head n-gram count and percentile over n in range 2<n<noise limit 
and return days in range d < kW can be used to reduce the noise in 
data.

In addition to information value we calculate:

● Head n-gram count is number of occurrences of the head n-gram 
inside the current window;

● Head percentile is percentage of the n-grams which have higher 
information value than the head n-gram.

Note: k is set to approximately 0.2 to keep noise limit about the 
same.
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Figure 2. Aggregate information value, count and percentile. S&P Crash of 2008. See legend on page 11.
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Figure 3. Aggregate information value, count and percentile: official announcements. See legend on page 11.
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Figure 2 legend: S&P 500 around the crash of 2008. Vertical Lines: 
notable spikes (IR n-gram events) appear to show in the beginning of 
a new trend? Vertical Bars: troughs in head information value 
(clustered IP n-grams) possibly indicate end of a trend?
Information value and Count are strongly anti-correlated.
Figure 3 legend. BAC official announcements overlayed on aggregate 
values: quarterly reports as black vertical lines, other announcements 
as vertical grey dashed lines.

Discussion
While Figure 2 may suggest connection between notable trends and 
appearance of IR and clustered IP n-grams, the result is inconclusive 
and requires a formal definition of a trend and proper statistical 
verification.
Figure 3 fails to show any obvious connection between aggregate 
information value and announced events. This may be due to many 
reasons: lack of surprize in some of the events or their insignificance 
to the investors. 
Future work will focus on making this findings more concrete.
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